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ABSTRACT

A finite difference scheme for three-dimensional steady
laminar incompressible flows is presented. The Navier-Stokes
equations are expressed conservatively in terms of velocity
and pressure increments (delta form). First order upwind
differences are used for first order partial derivatives of
velocity increments resulting in a diagonally dominant matrix
system. Central differences are applied to all other terms
for second order accuracy. The SIMPLE pressure correction
algorithm 1s used to satisfy the continuity equation. Numer-
ical results are presented for cubic cavity flow problems for
Reynolds numbers up to 2000 and are in good agreement with
other numerical results.

1. INTRODUCTION

Two basic problems for a finite difference scheme for
incompressible Navier-Stokes equations are stability and
accuracy. Second order accuracy can be achieved by using a
central difference method, but it s unstable at high
Reynolds number. Stability at very high Reynolds numbers can
be achieved using first order upwind differencing, but 1t is
only first order accurate. Several schemes which combine
upwind and central differences have been developed [1], but
these methods are only first order accurate. The second
order upwind method encounters difficulties with convergence
and accuracy [2].

The present approach retains the second order accuracy
of central differencing while uti1izing the stability of
first order upwind differencing. The incompressible Navier-
Stokes equations in conservative deita form [3] are formu-
lated, 1.e., momentum equations are written in terms of the
increments of primitive variables rather than primitive vari-
ables themselves. The equations are then decoupled and




solved semi-implicitly. By using central differencing for
the primitive variable terms on the right hand side of the
equations, the scheme achieves second order accuracy. By
applying first order upwind differencing for the first order
partial derivative velocity increment terms on the left hand
side of the equations, the method yields a diagonally domi-
nant matrix system which is then solved by a 1ine by line
tridiagonal-matrix algorithm. To satisfy the continuity
equation, the SIMPLE algorithm ([1,4,5] for pressure correc-
tion 1s used.

The present finite difference approach is used to solve
the cubic cavity flow problem which was studied by numerous
authors [6-10]. This problem is important because it is a
three-dimensional steady separated flow with very simple
geometry and boundary conditions. In this paper, the results
are compared with those of other numerical methods for
Reynolds numbers up to 2000.

2. GOVERNING EQUATIONS

The Navier-Stokes equations for incompressible viscous
flows are:
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where u, v, and w are velocity components, p 1s pressure,
and Re 1is Reynolds number.

A1l variables are nondimensionalized by the character-
jstic velocity of the upper surface and the characterist1c
length of the box side.




Let uN, vN, wN, and pN be the quantities corresponding
to u, v, w, and p at time level N. Let

suN = uN+1 _ N (5)
and let &vN, &wN, and &pN be defined similarly.

Applying the fully implicit method to Eq. (2) for uN+l,
one obtains:
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After dropping all second order terms and rearranging,
Eq. (6) becomes _
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The above equation i1s decoupled from the others by set-
ting &vN, swN, and &pN equal to zero. With this assump-
tion, the right hand side of the equation is exactly the
steady state incompressible viscous equation. The accuracy
of the finite difference method applied to this expression is
the accuracy of the scheme. Notice that the usual 1ineari-
zation gives the term a/ax (uNsuN) 4instead of a/ax
(2uNsuN) as above.




For completeness, the corresponding expressions for
Eqs. (3) and (4) are
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Let u* be an estimate for uN*1 etc., then the
velocity fleld (u*, v*, and w*) does not satisfy continuity
in general. To correct velocity and pressure, the following
pressure equation, based on the SIMPLE pressure correction
algorithm [12], 1s solved.
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where &N 4s the pressure correction. Velocity and

pressure are then corrected as follows:

pN+1 = pN + ap GDN (9)
N

R = (10)
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where ap is an under-relaxation factor [12].




3. NUMERICAL METHOD

An equally spaced rectangular coordinate system is used
throughout this study. For the first order space derivatives
of the left hand side of Eq. (7), first order upwind
differencing is used, e.g.,
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Similar expressions apply to

N
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Central differencing is used for all diffusion terms, e.qg.,
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where ¢ can be any variable.

A1l terms on the right hand side of Eq. (7) are discre-
tized by using central differencing, e.g.,
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A 1ine by line tridiagonal-matrix algorithm is used. 1In
the x-momentum equation, Eq. 7(a), suN 3s found by sweeping
implicity in the z direction only once. Similarly, &vN
and &wN are found by sweeping implicity in the x and vy
directions respectively. The Poisson equation for &pN,

Eq. (8), is swept in all three directions (ADI method).
Central differences are used for Eqs. (8) to (12). The
calculation procedure is sketched schematically as follows:




Set &u = 0; §v = 0; dw = 0 =

[ Solve x-momentum for su's |

\
Update u; u* = uN + suN

R

\
[ Solve y-momentum for &v's

\
| Update v; v* = vN + guN

(NS R WY

i
[T Solve z-momentum for &w's |

| update w; w* = wN + gWN |

\
i Solve Eq. (8) for &pN |

\
Update u, v, w, and p
using Eq. (9) to (12)

\
[Extrapolate p on boundary (B.C.)|

Check
onvergence

No

4. INITIAL AND BOUNDARY CONDITIONS

For the i1nitial iteration, u, v, w, and p are set to
zero at each grid point, except u =1o0on z =1 (upper sur-
face); all values on the boundary remain unchanged, except

the pressure which s adjusted by second order extrapolation
at each iteration.

5. RESULTS

A1l results presented here use the convergence criteria
of 0.0001 for maximum &u with an underrelaxation factor for
pressure ap = 0.8. A1l grid sizes are 30 by 30 by 30 except
otherwise indicated. .




The geometry and the boundary conditions for cubic cav-
ity flow are shown in Fig. 1. A cubical box with its upper
surface moving at constant speed u =1 1s shown in the
figure.

The results for Reynolds number 100 are given in Figs. 2
to 5. Figure 2 shows the comparison of the velocity profile
on the vertical center 1ine with those of Cazalbou et al. [8]
and Goda [6]. The agreement with both results is excellent.

In order to show the flow directions for very small
velocity vectors, all velocity vectors are stretched to con-
stant magnitude (called velocity field in Ref. [8]). The
velocity field in the symmetry plane is i1l1lustrated for
Re = 100 in Fig. 3. A primary vortex is clearly shown in the
figure and a small corner eddy at the bottom corner A, is
also visible. Figure 4 shows a larger corner eddy at corner
A, on the cross section just next to the side wall.

Figures 5(a) to (d) show secondary flows on cross sec-
tions from x = 0.63 back to x = 0.47. A pair of large vor-
tices are observed in reverse flow under the primary vortex.
The sequence of motion for these vortices are shown from
Figs. 5(a) to (d). This pair of vortices is formed from the
side wall and moves toward the symmetry plane over a very
short distance. They are mixed and dispersed near the sym-
metry plane. Another pair of secondary vortices is formed
from the side walls close to the moving top surface
(Fig. 5(c)) and disperses in a very short distance.

The results for Re = 400, 1000, and 2000 are shown in
Figs. 6 to 9. The results are compared with other methods in
Figs. 6(a) to (c¢). Figure 6(a) shows the excellent agreement
with the results given by Cazalbou et al. [8] for Re = 400.
The results given by Goda [6] in the same figure, however,
are slightly different. For the case of Re = 1000, agreement
with the results of Cazalbou et al. are very good except for
only one point near the bottom surface. For Re = 2000,
excellent agreement with the results given by Cazalbou et al.
(8] 1s shown in Fig. 6(c).

Velocity vectors in the symmetry plane for Re = 400 are
shown in Fig. 7(a). The variation of magnitude of the velo-
city vectors 1s shown in this figure. Some of the magnitudes
of velocity vectors are as small as 0.0002. Figure 7(b) is
identical to Fig. 7(a), except i1t shows only the direction of
the velocity vectors. Notice that the eddy at corner A, for
Re = 400 is larger than that for Re = 100. 1In Figs. 7(c)
and (d), velocity fields in the symmetry plane for Re = 1000
and 2000 are shown. In these figures, the location of the
primary vortex center s closer to the center of the symmetry
plane. A larger eddy s clearly seen at the corner B.
Velocity fields in the vertical plane next to the side wall




for Re = 400, 1000, and 2000 are given in Figs. 8(a) to (c).
They are very different from the case for Re = 100 in Fig. 4.
A larger pair of upper secondary vortices for Re = 400, 1000,
and 2000 are observed in Figs. 9(a) to (c). 1In Fig. 9(c),
there are three pairs of vortices close to the bottom surface
instead of one pair seen for the cases of Re = 400 and 1000.
It is similar to the phenomena reported experimentally by
Koseff et al. [11] for Re = 2000. These vortices only appear
in a very short distance around x = 0.54.

The convergence history for Re = 100 is 1llustrated in
Fig. 10. CPU-time is only 19.8 sec on a CRAY X/MP computer
for the 20 by 20 by 20 grid size. CPU-time on a CRAY X/MP
for different cases are given in Table 1. It shows that the
present scheme is fairly fast and efficient for low Reynolds
numbers. However, when Reynolds numbers are high (greater
than 1000), the scheme needs some improvement as shown by
cpu-time in Table 1.

6. CONCLUSION

A diagonally dominant finite difference scheme with
second order accuracy is presented. Comparisons of present
results with other numerical methods are in very good agree-
ment. CPU-time for the case of Re = 100 with 20 by 20 by 20
grid points is only 19.8 sec on a CRAY X/MP computer.
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TABLE 1. - COMPUTING CPU-TIME

{CRAY X/MP, error <0.0001.]

Reynolds Grid size AT | CPU-time, | Number of
number sec iterations
100 20 by 20 by 20 0.1 19.80 162
100 30 by 30 by 30 A 88.39 230
400 30 by 30 by 30 1 108.71 286
1000 30 by 30 by 30 A 147.97 393
2000 50 by 50 by 50 .01 4712.76 2815
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FIGURE 1. - GEOMETRY AND BOUNDARY CONDITIONS OF CUBIC CAVITY FLOW. FIGURE 2. - COMPARISON OF VELOCITY PROFILES ON THE CENTERLINE
FOR RE = 100.
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The SIMPLE pressure cor-

Numerical results
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